博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
XJTUOJ wmq的A×B Problem FFT/NTT
阅读量:4525 次
发布时间:2019-06-08

本文共 6058 字,大约阅读时间需要 20 分钟。

wmq的A×B Problem

发布时间: 2017年4月9日 17:06   最后更新: 2017年4月9日 17:07   时间限制: 3000ms   内存限制: 512M

描述

这是一个非常简单的问题。

wmq如今开始学习乘法了!他为了训练自己的乘法计算能力,写出了n个整数,并且对每两个数a,b都求出了它们的乘积a×b。现在他想知道,在求出的n(n1)2个乘积中,除以给定的质数m余数为k(0k<m)的有多少个。

输入

第一行为测试数据的组数。

对于每组测试数据,第一行为2个正整数n,m,2n,m60000,分别表示整数的个数以及除数。
接下来一行有n个整数,满足0ai109
保证总输出行数m3×105

输出

对每组数据输出m行,其中第i行为除以m余数为(i1)的有多少个。

样例输入1
24 52 0 1 74 22 0 1 6
样例输出1
3020160
 
题解:
  m是素数,显然,利用原根性质
  i -> g^i
  此时g为m的原根
  首先 模剩余系 为0~m-1,那么模为 i * j 转化为 g^(i+j)
  即FFT求解,NTT也可过
  最后转化回来即可
#include
using namespace std;#pragma comment(linker, "/STACK:102400000,102400000")#define ls i<<1#define rs ls | 1#define mid ((ll+rr)>>1)#define pii pair
#define MP make_pairtypedef long long LL;const long long INF = 1e18+1LL;const double pi = acos(-1.0);const int N = 333333+10, M = 1e3+20,inf = 2e9,mod = 469762049;int MOD;inline int mul(int a, int b){ return (long long)a * b % MOD;}int power(int a, int b){ int ret = 1; for (int t = a; b; b >>= 1){ if (b & 1)ret = mul(ret, t); t = mul(t, t); } return ret;}int cal_root(int mod){ int factor[20], num = 0, s = mod - 1; MOD = mod--; for (int i = 2; i * i <= s; i++){ if (s % i == 0){ factor[num++] = i; while (s % i == 0)s /= i; } } if (s != 1)factor[num++] = s; for (int i = 2;; i++){ int j = 0; for (; j < num && power(i, mod / factor[j]) != 1; j++); if (j == num)return i; }}struct Complex { long double r , i ; Complex () {} Complex ( double r , double i ) : r ( r ) , i ( i ) {} Complex operator + ( const Complex& t ) const { return Complex ( r + t.r , i + t.i ) ; } Complex operator - ( const Complex& t ) const { return Complex ( r - t.r , i - t.i ) ; } Complex operator * ( const Complex& t ) const { return Complex ( r * t.r - i * t.i , r * t.i + i * t.r ) ; }} ;void FFT ( Complex y[] , int n , int rev ) { for ( int i = 1 , j , t , k ; i < n ; ++ i ) { for ( j = 0 , t = i , k = n >> 1 ; k ; k >>= 1 , t >>= 1 ) j = j << 1 | t & 1 ; if ( i < j ) swap ( y[i] , y[j] ) ; } for ( int s = 2 , ds = 1 ; s <= n ; ds = s , s <<= 1 ) { Complex wn = Complex ( cos ( rev * 2 * pi / s ) , sin ( rev * 2 * pi / s ) ) , w ( 1 , 0 ) , t ; for ( int k = 0 ; k < ds ; ++ k , w = w * wn ) { for ( int i = k ; i < n ; i += s ) { y[i + ds] = y[i] - ( t = w * y[i + ds] ) ; y[i] = y[i] + t ; } } } if ( rev == -1 ) for ( int i = 0 ; i < n ; ++ i ) y[i].r /= n ;}Complex s[N];int T,n,m,x,num[N];LL ans[N],mo[N],fmo[N];int main() { scanf("%d",&T); while(T--) { scanf("%d%d",&n,&m); int G = cal_root(m); for(LL i = 0, t = 1; i < m-1; ++i,t = t*G%m) mo[i] = t,fmo[t] = i; memset(num,0,sizeof(num)); LL cnt0 = 0; for(int i = 0; i <= m; ++i) ans[i] = 0; for(int i = 1; i <= n; ++i) { scanf("%d",&x); x%=m; if(x == 0) cnt0++; else { num[fmo[x]]++; } } int n1 = 1; for(n1=1;n1<=(2*m-2);n1<<=1); for(int i = 0; i < m; ++i) s[i] = Complex(num[i],0); for(int i = m; i < n1; ++i) s[i] = Complex(0,0); FFT(s,n1,1); for(int i = 0; i < n1; ++i) s[i] = s[i]*s[i]; FFT(s,n1,-1); printf("%lld\n",(LL)cnt0*(n-cnt0)+(LL)cnt0*(cnt0-1)/2); for(int i = 0; i <= 2*m-2; ++i) { LL now = (LL)(s[i].r+0.5); if(i%2==0) now -= num[i/2]; now/=2; ans[mo[i%(m-1)]] += now; } for(int i = 1; i < m; ++i) printf("%lld\n",ans[i]); } return 0;}

 

  
 
#include
using namespace std;#pragma comment(linker, "/STACK:102400000,102400000")#define ls i<<1#define rs ls | 1#define mid ((ll+rr)>>1)#define pii pair
#define MP make_pairtypedef long long LL;const long long INF = 1e18+1LL;const double pi = acos(-1.0);const int N = 533333+10, M = 1e3+20,inf = 2e9;int MOD;inline int mul2(int a, int b){ return (long long)a * b % MOD;}int power(int a, int b){ int ret = 1; for (int t = a; b; b >>= 1){ if (b & 1)ret = mul2(ret, t); t = mul2(t, t); } return ret;}int cal_root(int mod){ int factor[26], num = 0, s = mod - 1; MOD = mod--; for (int i = 2; i * i <= s; i++){ if (s % i == 0){ factor[num++] = i; while (s % i == 0)s /= i; } } if (s != 1)factor[num++] = s; for (int i = 2;; i++){ int j = 0; for (; j < num && power(i, mod / factor[j]) != 1; j++); if (j == num)return i; }}LL P,G;LL mul(LL x,LL y){ return (x*y-(LL)(x/(long double)P*y+1e-3)*P+P)%P;}LL qpow(LL x,LL k,LL p){ LL ret=1; while(k){ if(k&1) ret=mul(ret,x); k>>=1; x=mul(x,x); } return ret;}LL wn[50];void getwn(){ for(int i=1; i<=25; ++i){ int t=1<
>1,k; i
>1; while(j>=k){ j-=k; k>>=1; } if(j
>1); ++j){ LL u=y[j],t=mul(y[j+h/2],w); y[j]=u+t; if(y[j]>=P) y[j]-=P; y[j+h/2]=u-t+P; if(y[j+h/2]>=P) y[j+h/2]-=P; w=mul(w,wn[id]); } } } if(op==-1){ for(int i=1; i
< m; ++i) s[i] = num[i]; for(int i = m; i < len; ++i) s[i] = 0; NTT_init(); NTT(s,1); for(int i = 0; i < len; ++i) s[i] = mul(s[i],s[i]); NTT(s,-1); for(int i = 0; i <= 2*m-2; ++i) { LL now = s[i]; if(i%2==0) now -= num[i/2]; now /= 2; ans[mo[i%(m-1)]] += now; } printf("%lld\n",(LL)cnt0*(n-cnt0)+(LL)cnt0*(cnt0-1)/2); for(int i = 1; i < m; ++i) printf("%lld\n",ans[i]); } return 0;}

 

转载于:https://www.cnblogs.com/zxhl/p/7107469.html

你可能感兴趣的文章